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Abstract 
Software systems are often vulnerable to failure when confronting unforeseen circumstances. Considering that real 
world ‘open’ environments are endlessly varied and dynamic, making systems robust in such environments is 
particularly challenging: the set of conditions cannot be enumerated and handled at design time. Our analysis of 
different classes of surprise suggests an architecture for achieving robust goal-oriented behavior in open environments. 
In particular, we content that by adding a reflective layer to standard OODA-loop control processing, recovery from a 
variety of unanticipated events can be achieved. We present here the elements of that architecture and some results from 
applying this approach to an example domain. 
 
1. Overview 
 
The nature of software design is that systems are built and operate with particular expectations of the environment in 
which they will run. Within the constraints of these expectations, the system may perform as desired. However, 
software systems are notoriously brittle in facing the unanticipated. The behavior may range from the inefficient to the 
unreasonable to outright failure. This vulnerability stems naturally from the inability on the part of the designer to 
anticipate every eventuality of an open environment. Despite this, what is desired, at the very least, is a system that 
behaves reasonably in that it can: 
• Not fail the first time it encounters something unanticipated 
• Not be surprised in similar circumstances thereafter 
• Improve response in each subsequent encounter 
 
Surprise results from encountering observations significantly counter to expectations. A prerequisite, then, for coping 
with surprise is the ability to be surprised, and thus to have expectations. Such a difference between expectation and 
observation may be categorized in terms of: 
• Quantitative: The observation represents a low-probability contingency not explicitly planned for. 
• Qualitative: The observation represents a zero-probability event, contradicting the current world model. 
 
In either case, some inadequacy in the current model may be the source of the surprise. In the quantitative case, the 
environment may have changed in some way not yet reflected in models. In the qualitative case, the model may be 
limited in its scope by certain assumptions, precluding the representation of some events.  
 
In seeking behaviors that are reasonable by the above criteria, we contend that systems must have some flexibility in 
order to adapt. They must support multiple goals to allow trade-offs of different courses of actions. They must, further, 
be able to reliably predict the state of the world (as a result of and independent of its actions) in order to plan and act 
successfully. In the face of surprise, they must be able to monitor and correct their own performance and predictions. 
Moreover, they must make their model assumptions explicit, to allow for identifying and recovering from the sources of 
surprising events by questioning these assumptions. 
 
The architectural approach described below seeks to provide software with these attributes in order to enable them to 
deal reasonably in open environments. 
 
2. Architectural Approaches 
 
The standard cognitive control loop seeks to take actions expected achieve its goals. That is, it relies on some predictive 
capability to project expected outcomes of potential actions and evaluate the utility of these projections. Underlying this 



control loop is another process of achieving reliable prediction. A two-tier control mechanism is suggested as illustrated 
in Figure 1: 
• Environmental Controller (EC): Work to achieve goals by acting in world based on predictions 
• Cognitive Controller (CC): Work on world model to improve predictions.  
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CC should not direct the EC to turn on a given actuator; rather it may ask the EC to view more favorably plans that 
exercise a given actuator, but only if it falls into the broader set of EC goals.  
 
We have developed a generic test framework in which to develop and test robust behavior in open environments. The 
test framework contains a world simulator that allows for scripted changes to the world and measurements of the world 
as available to the EC. 
 
3. Example Domain: Temperature Control  
 
To illustrate our approach, we have implemented a system controlling the temperature of a room to desired levels. The 
components of the domain include: 
• Goals: Comfort: Maintain the room temperature to as close to 60 degrees as possible, Economy: Minimize time of 

having AC/Heat running, Simplicity: Minimize the number of times we switch AC/Heat on/off 
• Sensors: Measurements are available of temperature inside the room and outside the building 
• Controls: Two heaters are available (one stronger than the other) and one AC 
 
Initially, the sensors are presumed to work, but the qualitative metaphysics understand they may be noisy, biased, or 
broken. The actuators are presumed to work with qualitative effect that being on raises/lowers room temperature (by 
how much, how fast are quantitative parameters to be learned and adjusted over time). 
 
At system startup, the CC does not have enough information about the behaviors of the actuators to make a reliable 
predictor and encourages the EC to sample the space of actuators. The EC obliges since it can’t find any plan that has a 
good predicted outcome. Once some measurements are available for the actuators, a reasonable predictor is available, 
and the EC is able to establish classic ‘saw tooth’ control. Soon, the CC realizes that by including the outside 
temperature (originally ignored for simplicity) in its predictive model, it provides a much better correlation to observed 
data. The world simulator is subsequently scripted to include different surprising events, including very noisy 
temperature measurements (which the CC handles by increasing sampling and smoothing) and a broken heater (which 
the CC learns to predict will have no effect, and the EC will cease to select it in its plans). 

 
Figure 2 illustrates a particular scenario in the life of this temperature control domain, including responses to these and 
other scenarios. 
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Figure 2: Results from the temperature control simulation, showing the CC providing updated predictors to allow the 

EC to continue to control temperature in the face of surprising events (e.g. noisy sensors and broken actuators). 



4. Conclusion 
 
Although we are still in the early stages of exploring this paradigm, we anticipate that hybrid memory and reasoning 
models will provide additional degrees of robustness to different kinds of surprising, dynamic conditions. In particular, 
by appropriate layering of case-based, statistical and rule-based/logical models, we contend that the vulnerabilities of 
one approach may be covered by the strength of another. Further, we are actively investigating incorporating models of 
uncertainty and lack of knowledge into these predictive models. Specifically, we are seeking to formalize the notion of 
‘knowledge actions’ as another potential action for the EC to take that will provide more information, allowing it and 
the CC to make better predictions. Additionally, we are investigating how the CC can work to manage the allocation of 
resources (particularly time) to the EC, in terms of optimal times for planning relative to unfolding execution. 
 
These future efforts not withstanding, several aspects of our approach are suggestive towards a general approach to 
robust handling of surprise: 
• While prediction provides a key to good control, there is a notion of ‘good enough prediction’ within which 

reasonable control and response can be achieved (if subject to subsequent fine-tuning). 
• Environmental controllers should ascribe benefits to their actions not only by the utility of their predicted outcome, 

but the information they will provide a reflective layer to allow them to make better predictions in the future. 
• The distinction between qualitative and quantitative provides a strong foundation for handling different kinds of 

surprises. 
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